iokm.Rd
Clusters interval data using the OKM (Overlapping K-means) algorithm.
iokm(
x,
centers,
nstart = 10,
distance = "euclid",
algorithm = "std",
update = "mean",
trace = FALSE,
iter.max = 20,
secure = FALSE
)
A 3D interval array representing the data to be clustered.
Either the number of clusters to create or a set of pre-initialized cluster centers. If a number is provided, it indicates how many clusters to create.
The number of times to run the OKM algorithm with different starting values to find the best result (default is 10).
A string specifying the distance metric to use: 'euclid' for Euclidean distance or 'hausdorff' for Hausdorff distance (default is 'euclid').
A string specifying the algorithm type to use: 'std' for the standard algorithm or 'matrix' for matrix-based algorithm (default is 'std').
A string specifying the update method for cluster centers. Either: 'mean', 'sum', 'join' or 'meet' (default is 'mean').
Logical value indicating whether to show progress of the algorithm (default is `FALSE`).
Maximum number of iterations allowed for the OKM algorithm (default is 20).
Logical value indicating whether to ensure that the minimum is less than or equal to the maximum in intervals (default is `FALSE`).
A list of clustering results, including: - `cluster`: Matrix indicating the cluster assignment for each data point. - `centers`: The final cluster centers. - `totss`: Total sum of squares. - `withinss`: Within-cluster sum of squares by elements. - `tot.withinss`: Total within-cluster sum of squares. - `betweenss`: Between-cluster sum of squares. - `size`: The number of points in each cluster. - `iter`: The number of iterations the algorithm executed. - `overlaps`: The average overlap across clusters.
iokm(iaggregate(iris, col = 5), 2)
#> IOKM clustering with 2 clusters of sizes: 2, 2
#>
#> Cluster centers:
#> , , Sepal.Length
#>
#> min max
#> 1 4.4 5.85
#> 2 5.0 7.95
#>
#> , , Sepal.Width
#>
#> min max
#> 1 2.216667 4.166667
#> 2 2.116667 3.566667
#>
#> , , Petal.Length
#>
#> min max
#> 1 1.083333 2.133333
#> 2 4.583333 7.133333
#>
#> , , Petal.Width
#>
#> min max
#> 1 0.1833333 0.6833333
#> 2 1.4833333 2.5833333
#>
#> Available components:
#> [1] "inter" "class"
#>
#> Clustering matrix:
#> 1 2
#> [1,] TRUE FALSE
#> [2,] TRUE TRUE
#> [3,] FALSE TRUE
#>
#> Within-cluster sum of squares by elements:
#> [1] 0.1491667 0.5966667 0.1491667
#> (Between_SS / Total_SS = 99.2%)
#> Available components:
#> [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
#> [6] "betweenss" "size" "iter" "overlaps"
iokm(iaggregate(iris, col = 5), iaggregate(iris, col = 5))
#> IOKM clustering with 3 clusters of sizes: 1, 1, 1
#>
#> Cluster centers:
#> , , Sepal.Length
#>
#> min max
#> 1 4.3 5.8
#> 2 4.9 7.0
#> 3 4.9 7.9
#>
#> , , Sepal.Width
#>
#> min max
#> 1 2.3 4.4
#> 2 2.0 3.4
#> 3 2.2 3.8
#>
#> , , Petal.Length
#>
#> min max
#> 1 1.0 1.9
#> 2 3.0 5.1
#> 3 4.5 6.9
#>
#> , , Petal.Width
#>
#> min max
#> 1 0.1 0.6
#> 2 1.0 1.8
#> 3 1.4 2.5
#>
#> Available components:
#> [1] "inter" "class"
#>
#> Clustering matrix:
#> 1 2 3
#> [1,] TRUE FALSE FALSE
#> [2,] FALSE TRUE FALSE
#> [3,] FALSE FALSE TRUE
#>
#> Within-cluster sum of squares by elements:
#> [1] 0 0 0
#> (Between_SS / Total_SS = 100.0%)
#> Available components:
#> [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
#> [6] "betweenss" "size" "iter" "overlaps"