ikmeans.Rd
Performs k-means clustering on interval data, allowing for partitioning of data points into distinct clusters.
ikmeans(
x,
centers,
nstart = 10,
distance = "euclid",
trace = FALSE,
iter.max = 20
)
A 3D interval array representing the data to be clustered.
Either the number of clusters to create or a set of pre-initialized cluster centers. If a number is provided, it specifies how many clusters to create.
The number of times to run the k-means algorithm with different starting values in order to find the best solution (default is 10).
A string specifying the distance metric to use: 'euclid' for Euclidean distance or 'hausdorff' for Hausdorff distance (default is 'euclid').
Logical value indicating whether to show progress of the algorithm (default is `FALSE`).
Maximum number of iterations allowed for the k-means algorithm (default is 20).
A list of clustering results, including: - `cluster`: A vector indicating the cluster assignment of each data point. - `centers`: The final cluster centers. - `totss`: Total sum of squares. - `withinss`: Within-cluster sum of squares by cluster. - `tot.withinss`: Total within-cluster sum of squares. - `betweenss`: Between-cluster sum of squares. - `size`: The number of points in each cluster. - `iter`: Number of iterations the algorithm executed.
ikmeans(iaggregate(iris, col = 5), 2)
#> Ikmeans clustering with 2 clusters of sizes: 2, 1
#>
#> Cluster centers:
#> , , Sepal.Length
#>
#> min max
#> 1 4.9 7.45
#> 2 4.3 5.80
#>
#> , , Sepal.Width
#>
#> min max
#> 1 2.1 3.6
#> 2 2.3 4.4
#>
#> , , Petal.Length
#>
#> min max
#> 1 3.75 6.0
#> 2 1.00 1.9
#>
#> , , Petal.Width
#>
#> min max
#> 1 1.2 2.15
#> 2 0.1 0.60
#>
#> Available components:
#> [1] "inter" "class"
#>
#> Clustering vector:
#> [1] 2 1 1
#>
#> Within-cluster sum of squares by cluster:
#> [1] 3.575 0.000
#> (Between_SS / Total_SS = 96.2%)
#> Available components:
#> [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
#> [6] "betweenss" "size" "iter"
ikmeans(iaggregate(iris, col = 5), iaggregate(iris, col = 5))
#> Ikmeans clustering with 3 clusters of sizes: 1, 1, 1
#>
#> Cluster centers:
#> , , Sepal.Length
#>
#> min max
#> 1 4.3 5.8
#> 2 4.9 7.0
#> 3 4.9 7.9
#>
#> , , Sepal.Width
#>
#> min max
#> 1 2.3 4.4
#> 2 2.0 3.4
#> 3 2.2 3.8
#>
#> , , Petal.Length
#>
#> min max
#> 1 1.0 1.9
#> 2 3.0 5.1
#> 3 4.5 6.9
#>
#> , , Petal.Width
#>
#> min max
#> 1 0.1 0.6
#> 2 1.0 1.8
#> 3 1.4 2.5
#>
#> Available components:
#> [1] "inter" "class"
#>
#> Clustering vector:
#> [1] 1 2 3
#>
#> Within-cluster sum of squares by cluster:
#> [1] 0 0 0
#> (Between_SS / Total_SS = 100.0%)
#> Available components:
#> [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
#> [6] "betweenss" "size" "iter"